

et
International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 235-238(2015)

 ISSN No. (Print) : 0975-8364

 ISSN No. (Online) : 2249-3255

Online Intrusion Alert Aggregation with Generative Data Stream
Modeling

Sushma Priyadarshini
Department of CSE, BKIT, Bhalki, Karnataka, INDIA

(Corresponding author: Sushma Priyadarshini)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Alert aggregation is an important subtask of intrusion detection. The goal is to identify and to
cluster different alerts—produced by low-level intrusion detection systems, firewalls, etc.—belonging to a

specific attack instance which has been initiated by an attacker at a certain point in time. Thus, meta-alerts

can be generated for the clusters that contain all the relevant information whereas the amount of data (i.e.,

alerts) can be reduced substantially. Meta-alerts may then be the basis for reporting to security experts or for

communication within a distributed intrusion detection system.

I. INTRODUCTION

INTRUSION detection systems (IDS) are besides other

protective measures such as virtual private networks,

authentication mechanisms,or encryption techniques

very important to guarantee information security. They

help to defend against the various threats to which

networks and hosts are exposed to by detecting the
actions of attackers or attack tools in a network or host-

based manner with misus or anomaly detection

techniques [1].

At present, most IDS are quite reliable in detecting

suspicious actionsby evaluating TCP/IP connections or

log files, for instance. Once an IDS finds a suspicious

action, it immediately creates an alert which contains

information about the source, target, and estimated type

of the attack (e.g., SQL injection, buffer overflow, or

denial of service). As the intrusive actions caused by a

single attack instance— which is the occurrence of an
attack of a particular type that has been launched by a

specific attacker at a certain point in time—are often

spread over many network connections or log file

entries, a single attack instance often results in

hundreds or even thousands of alerts. IDS usually focus

on detecting attack types, but not on distinguishing

between different attack instances. In addition, even

low rates of false alerts could easily result in a high

total number of false alerts if thousands of network

packets or log file entries are inspected. As a

consequence, the IDS creates many alerts at a low level

of abstraction. It is extremely difficult for a human

security expert to inspect this flood of alerts, and

decisions that follow from single alerts might be wrong

with a relatively high probability. In our opinion, a

“perfect” IDS should be situation-aware [2] in the sense

that at any point in time it should “know” what is going

on in its environment regarding attack instances (of

various types) and attackers. In this paper, we make an
important step toward this goal by introducing and

evaluating a new technique for alert aggregation. Alerts

may originate from low-level IDS such as those

mentioned above, from firewalls (FW), etc. Alerts that

belong to one attack instance must be clustered together

and meta-alerts must be generated for these clusters.

The main goal is to reduce the amount of alerts

substantially without losing any important information

which is necessary to identify ongoing attack instances.

We want to have no missing meta alerts, but in turn we

accept false or redundant meta-alerts to a certain
degree.

This problem is not new, but current solutions are

typically based on a quite simple sorting of alerts, e.g.,

according to their source, destination, and attack type.

Under real conditions such as the presence of

classification errors of the low-level IDS (e.g., false

alerts), uncertainty with respect to the source of the

attack due to spoofed IP addresses, or wrongly adjusted

time windows, for instance, such an approach fails quite

often.

Objective
(i) Online Intrusion Alert Aggregation with Generative
Data Stream Modelling is a generative modeling

approach using probabilistic methods.

 Priyadarshini 236

Assuming that attack instances can be regarded as

random processes “producing” alerts, we aim modeling

these processes using approximate maximum likelihood

parameter estimation techniques. Thus, the beginning as

well as the completion of attack instances can be

detected.
(ii) It is a data stream approach, i.e., each observed alert

is processed only a few times. Thus, it can be applied

online and under harsh timing constraints.

(iii) In the proposed scheme of Online Intrusion Alert

Aggregation with Generative Data Stream Modelling,

we extend our idea of sending Intrusion alerts to the

mobile. This makes the process easier and comfortable.

(iv) Online Intrusion Alert Aggregation with Generative

Data Stream Modeling does not degrade system

performance as individual layers are independent and

are trained with only a small number of features,
thereby, resulting in an efficient system.

(v) Online Intrusion Alert Aggregation with Generative

Data Stream Modeling is easily customizable and the

number of layers can be adjusted depending upon the

requirements of the target network. Our framework is

not restrictive in using a single method to detect

attacks. Different methods can be seamlessly integrated

in our framework to build effective intrusion detectors.

(vi) Our framework has the advantage that the type of

attack can be inferred directly from the layer at which it

is detected. As a result, specific intrusion response

mechanisms can be activated for different attacks.

II. ALGORITHM FOR THE PROPOSED IDS

MISUSE BASED DETECTION ALGORITHM

Step 1: Select the ‘n’ layers needed for the whole

IDS.Step

2: Build Sensor Layer to detect Network and Host

Systems.

Step 3: Build Detection Layer based on Misuse and

Anomaly detection technique.

Step 4: Classify various types of alerts. (For example

alert for System level intrusion or process level

intrusion)
Step 5: Code the system for detecting various types of

attacks and alerts for respective attacks.

Step 6: Integrate the system with Mobile device to get

alerts from the proposed IDS.

Step 7: Specify each type of alert on which category it

falls, so that user can easily recognize the attack type.

Step 8: Build Reaction layer with various options so

that administrator/user can have various options to

select or react on any type of intrusion.

Step 9: Test the system using Attack Simulation

module, by sending different attacks to the proposed

IDS.

Step 10: Build a log file, so that all the reports

generated can be saved for future references.

III. LITERATURE SURVEY

 Literature survey is the most important step in software

development process. Before developing the tool it is

necessary to determine the time factor, economy n
company strength. Once these things r satisfied, ten

next step is to determine which operating system and

language can be used for developing the tool. Most

existing IDS are optimized to detect attacks with high

accuracy. However, they still have various

disadvantages that have been outlined in a number of

publications and a lot of work has been done to analyze

IDS in order to direct future research (cf. [5], for

instance). Besides others, one drawback is the large

amount of alerts produced. Recent research focuses on

the correlation of alerts from (possibly multiple) IDS. If
not stated otherwise, all approaches outlined in the

following present either online algorithms or—as we

see it—can easily be extended to an online version.

Probably, the most comprehensive approach to alert

correlation is introduced in [6]. One step in the

presented correlation approach is attack thread

reconstruction, which can be seen as a kind of attack

instance recognition. No clustering algorithm is used,

but a strict sorting of alerts within a temporal window

of fixed length according to the source, destination, and

attack classification (attack type).

In [7], a similar approach is used to eliminate
duplicates, i.e., alerts that share the same quadruple of

source and destination address as well as source and

destination port.

 Priyadarshini 237

In addition, alerts are aggregated (online) into

predefined clusters (so-called situations) in order to

provide a more condensed view of the current attack

situation. The definition of such situations is also used

in [8] to cluster alerts. In [9], alert clustering is used to

group alerts that belong to the same attack occurrence.
Even though called clustering, there is no clustering

algorithm in a classic sense. The alerts from one (or

possibly several) IDS are stored in a relational database

and a similarity relation—which is based on expert

rules—is used to group similar alerts together. Two

alerts are defined to be similar, for instance, if both

occur within a fixed time window and their source and

target match exactly. As already mentioned, these

approaches are likely to fail under real-life conditions

with imperfect classifiers (i.e., low-level IDS) with

false alerts or wrongly adjusted time windows. Another
approach to alert correlation is presented in [10].

IV. IMPLEMENTATION

 Implementation is the stage of the paper when the

theoretical design is turned out into a working system.

Thus it can be considered to be the most critical stage in

achieving a successful new system and in giving the

user, confidence that the new system will work and be

effective.

The implementation stage involves careful planning,

investigation of the existing system and it’s constraints

on implementation, designing of methods to achieve

changeover and evaluation of changeover methods.
MODULES

Server

Client

DARPA Datasets

Mobile

Attack Simulation

Server
Server module is the main module for this project. This

module acts as the Intrusion Detection System.

Client
Client module is developed for testing the Intrusion
Detection System. In this module the client can enter

only with a valid user name and password. If an

intruder enters with any guessing passwords then the

alert is given to the Server and the intruder is also

blocked. Even if the valid user enters the correct user

name and password, the user can use only for minimum

number of times. For example even if the valid user

makes the login for repeated number of times, the client

will be blocked and the alert is sent to the admin. In the

process level intrusion, each client would have given a

specific process only. For example, a client may have

given permission only for P1 process. If the client tries

to make more than these processes the client will be

blocked and the alert is given by the Intrusion Detection

System. In this client module the client can be able to

send data. Here, when ever data is sent Intrusion
Detection System checks for the file. If the size of the

file is large then it is restricted or else the data is sent.

DARPA Dataset
This module is integrated in the Server module. This is

an offline type of testing the intrusions. In this module,

the DARPA Data Set is used to check the technique of

the Online Intrusion Alert Aggregation with Generative

Data Stream Modeling. The DARPA data set is

downloaded and separated according to each layers. So

we test the instance of DARPA Data set using the open

file dialog box. Whenever the dataset is chosen based
on the conditions specified the Intrusion Detection

System works.

Mobile
This module is developed using J2ME. The traditional

system uses the message log for storing the alerts. In

this system, the system admin or user can get the alerts

in their mobile. Whenever alert message received in the

message log of the server, the mobile too receives the

alert message.

Attack Simulation
 In this module, the attack simulation is made for our

self to test the system. Attacks are classified and made
to simulate here. Whenever an attack is launched the

Intrusion Detection System must be capable of

detecting it. So our system will also be capable of

detecting such attacks. For example if an IP trace attack

is launched, the Intrusion Detection System must detect

it and must kill or block the process.

V. CONCLUSION

In this paper a novel technique for online alert

aggregation. It also addressed the problem of accuracy

and efficiency of Intrusion Detection System. It

developed the presented architecture and tested the
system with the misuse based anomaly detection

technique. it also proposed a misuse based anomaly

detection algorithm for our system. As our contribution,

to make the system more efficient in identify the

intrusion alerts and also it extend this work by sending

the Alerts as Message to the Network Administrator

who governs the Network or Intrusion Detection

System. Most of the present existing Intrusion

Detection System does not have a generalized

framework.

 Priyadarshini 238

Our proposed architecture is similar to layers, so

according to the network environment, the network

administrator can add or remove the layers. If a new

updated version of detection comes in future, then it

will be very easy to add the layer with our proposed

system. We also tested our system by launching
various attacks to the system, and we found how the

system detects and reacts according to the developed

IDS. As a future work, this work can be extended as not

only to detect attacks and also to prevent attacks. As

mentioned earlier, our proposed system allows adding

new layers, the prevention layer functionality layer can

also be added with our system, as a future work.

REFERENCE

[1]. Autonomous Agents for Intrusion Detection,

http://www.cerias. purdue.edu/research/aafid/, 2010.

[2]. CRF++: Yet Another CRF Toolkit,
http://crfpp.sourceforge.net/, 2010.

[3]. KDD Cup 1999 Intrusion Detection Data,

http://kdd.ics.uci.edu/

databases/kddcup99/kddcup99.html, 2010.

[4]. Overview of Attack Trends,

http://www.cert.org/archive/pdf/ attack_trends.pdf,

2002.

[5]. Probabilistic Agent Based Intrusion Detection,

http://www.cse.sc. edu/research/isl/agentIDS.shtml,

2010.

[6]. SANS Institute—Intrusion Detection FAQ,

http://www.sans.org/ resources/idfaq/, 2010.

[7]. T. Abraham, IDDM: Intrusion Detection Using
Data Mining Techniques,

http://www.dsto.defence./gov.au/publications/

2345/DSTO-GD-0286.pdf, 2008.

[8]. R. Agrawal, T. Imielinski, and A. Swami, “Mining

Association Rules between Sets of Items in Large

Databases,” Proc. ACM SIGMOD, vol. 22, no. 2, pp.

207-216, 1993.

[9]. N.B. Amor, S. Benferhat, and Z. Elouedi, “Naive

Bayes vs. Decision Trees in Intrusion Detection

Systems,” Proc. ACM Symp. Applied Computing (SAC

’04), pp. 420-424, 2004.
[10]. J.P. Anderson, Computer Security Threat

Monitoring and Surveillance,

http://csrc.nist.gov/publications/history/ande80.pdf,

2010. 11. R. Bace and P. Mell, Intrusion Detection

Systems, Computer Security Division, Information

Technology Laboratory, Nat’l Inst. of Standards and

Technology, 2001.

